Add like
Add dislike
Add to saved papers

Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.

Plasmonic materials show great potential for selective photocatalysis under relatively mild reaction conditions. However, the catalytic activity of these plasmonic catalysts can also depend upon the support material that stabilizes the catalysts, where the composition of the catalytic support may change the overall photocatalytic efficiency and yield. It is unknown how changes in the support material may change the plasmon-driven photocatalysis, which may be initiated by plasmon-derived hot carriers, localized heating, or enhanced electromagnetic fields. Herein, we probe the effects of catalytic supports on heating in plasmon-driven catalysis by examining various gold nanoparticle oxide systems. We use ultrafast surface-enhanced Raman thermometry to measure the effective temperature, equivalent to the vibrational kinetic energy, of reporter molecules located between plasmonic gold nanostructures and local environments ranging from ligands to mesoporous silica shells to silica shells. Upon photoexcitation, the transient effective temperature, equivalent to the energy deposited into a vibrational mode, of adsorbed molecules on the silica-coated samples increases, and the energy quickly dissipates within 3 ps. However, the baseline effective temperature that arises from the surface-enhanced Raman spectroscopy probing process depends upon the encapsulant, where the energy deposition differs by 200-300 K between the ligand-coated (citrate or CTAB) and the silica-coated samples. Adsorbates surrounded by a silica shell experience significantly higher effective temperatures than the adsorbates surrounded by ligands or solvent, likely because of the differing effective heat capacities of these media. Taken together, this work shows that a silica support impacts the localized heating of molecular adsorbates on the gold surface and may play a role in enhanced plasmonic photocatalysis because of increased thermal contributions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app