Add like
Add dislike
Add to saved papers

Mechanically Assembled, Three-Dimensional Hierarchical Structures of Cellular Graphene with Programmed Geometries and Outstanding Electromechanical Properties.

ACS Nano 2018 November 20
Three-dimensional (3D) cellular graphene structures have wide applications in energy storage, catalysis, polymer composites, electromagnetic shielding, and many others. However, the current strategies to form cellular graphene are only able to realize limited structure control and are hard to achieve the construction of 3D hierarchical architectures with complex, programmed configurations, limiting the design capabilities to satisfy various next-generation device applications. In addition, cellular graphene usually exhibits limited electromechanical properties, and its electrical and electrochemical performances are dramatically affected by mechanical deformations, constraining its applications in emerging wearable electronics and energy devices. Herein, we report a simple, general, and effective route to 3D hierarchical architectures of cellular graphene with desired geometries through the use of a mechanically guided, 3D assembly approach to overcome the aforementioned two challenges. Demonstrations include more than 10 3D hierarchical architectures with diverse configurations, ranging from mixed tables and tents, to double-floor helices, to kirigami/origami-inspired structures, and to fully separated multilayer architectures. The LED arrays interconnected with 3D helical coils and 3D interdigital supercapacitors fabricated with solid-state electrolytes provide prototypic examples of wearable devices that exhibit outstanding electromechanical properties and can maintain stable performances with little change in the electrical and electrochemical responses under extreme deformations, in both the static and cyclic loading conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app