Add like
Add dislike
Add to saved papers

Control of Shell Morphology in p-n Heterostructured Water-Processable Semiconductor Colloids: Toward Extremely Efficient Charge Separation.

Small 2018 November 15
This article describes p-n heterostructured water-borne semiconductor naonoparticles (NPs) with unique surface structures via control of shell morphology. The shell particles, comprising PC60-[6,6]-phenyl-C61-butyric acid methyl ester (PC61 BM) composite, having n-type semiconductor characteristics, notably influence the charge carrier behavior in the core-shell NPs. A one- or two-phase methodology based on a PC60 surfactant-water phase and PC61 BM n-type semiconductor-organic phase provides highly specific control over the shell structure of the NPs, which promote their superior charge separation ability when combined with poly-3-hexyl-thiophene (P3HT). Moreover, the resulting water-borne NP exhibits shell morphology-dependent carrier quenching and stability, which is characterized via luminescence studies paired with structural analysis. Corresponding to the results, outstanding performances of photovoltaic cells with over 5% efficiency are achieved. The results suggest that the surrounding shell environments, such as the shell structure, and its electronic charge density, are crucial in determining the overall activity of the core-shell p-n heterostructured NPs. Thus, this work provides a new protocol in the current fields of water-based organic semiconductor colloids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app