Add like
Add dislike
Add to saved papers

Effect of endosulfan and bisphenol A on the expression of SUMO and UBC9.

This study was designed to investigate possible interference of Xenobiotics with SUMOylation in eukaryotic cells. To begin with, we docked 71 chemical structures from PubChem with human SUMO1 and UBC9 protein structures using Auto Dock 4.2 and Hex 6.3 and selected five compounds for binding studies in Surface Plasmon Resonance (SPR) with human SUMO1. In SPR studies, only endosulfan showed binding to SUMO1 (Kd 1.313 × 10-4 M). Further, we treated HePG2 and differentiated 3T3-L1 cells with endosulfan/bisphenol A/perfluorooctanoic acid (PFOA) to test induction of oxidative stress and SUMO isoform/UBC9 expression. Treatment with these compounds resulted in higher levels of nitric oxide (NO), NOS2A mRNA, and reactive oxygen species (ROS) associated with decreased NADPH levels. Additionally, treatment with these chemicals resulted in elevated mRNA levels of IL-6 and IL-1β in 3T3-L1 cells. In HePG2 cells, endosulfan treatment resulted in elevated mRNA levels of SUMO1, 3 and UBC9, whereas, treatment with bisphenol A resulted in increased mRNA of SUMO2, 3 and UBC9. Treatment with PFOA resulted in elevated mRNA levels of SUMO2. Apart from influencing the gene expression, endosulfan caused decrease in SUMO1-Sumoylation of few proteins. We propose that one reason for the severe health consequences of exposure to endosulfan/bisphenol could be due to induction of oxidative stress and modulation in SUMO and UBC9 gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app