Add like
Add dislike
Add to saved papers

Electrical-Charge-Mediated Cancer Cell Targeting via Protein Corona-Decorated Superparamagnetic Nanoparticles in a Simulated Physiological Environment.

A critical issue in nanomedicine is on the understanding of nano-bio interface behaviors, particularly when the nanoparticles are inevitably decorated by protein coronas in the physiological fluids. In this study, the effects of particle surface corona on cancer cell targeting were investigated in simulated physiological fluids. Cell targeting was achieved by two strategies: (1) using conventional epithelial cell adhesion molecule antibody-functionalized Fe3 O4 nanoparticles and (2) rendering the same but naked magnetic nanoparticles electrically positively charged, enabling them to electrostatically bind onto the negatively charged cancer cells. The cell-particle electrostatic binding was found to be much stronger with faster reaction kinetics than the immunological interactions even at 4 nC. Both types of nanoparticles were decorated with various protein coronas by administration in a simulated physiological system. Well-decorated by protein coronas, the electrically charged particles retained strong electrostatic interactions with cancer cells, even upon reversal of the particle zeta potential from positive to negative. This behavior was explained by a nonuniform corona modulation of the particle surface charge distributions, exposing locally positively charged regions, capable of strong electrostatic cell binding and magnetic capturing in a physiological environment. This fundamental discovery paves new way for sensitive detection of circulating tumor cells in whole blood in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app