Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance.

MBio 2018 November 14
Typhoid fever, caused by Salmonella enterica serovar Typhi, is a global public health concern due to increasing antimicrobial resistance (AMR). Characterization of S Typhi genomes for AMR and the evolution of different lineages, especially in countries where typhoid fever is endemic such as Bangladesh, will help public health professionals to better design and implement appropriate preventive measures. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh during 1999 to 2013 and compared those sequences with data from a recent outbreak in Pakistan reported previously by E. J. Klemm, S. Shakoor, A. J. Page, F. N. Qamar, et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105-18), and a laboratory surveillance in Nepal reported previously by C. D. Britto, Z. A. Dyson, S. Duchene, M. J. Carter, et al. [PLoS Negl. Trop. Dis. 12(4):e0006408, 2018, https://doi.org/10.1371/journal.pntd.0006408]. WGS had high sensitivity and specificity for prediction of ampicillin, chloramphenicol, co-trimoxazole, and ceftriaxone AMR phenotypes but needs further improvement for prediction of ciprofloxacin resistance. We detected a new local lineage of genotype 4.3.1 (named lineage Bd) which recently diverged into a sublineage (named Bdq) containing qnr genes associated with high-level ciprofloxacin resistance. We found a ceftriaxone-resistant isolate with the bla CTX-M-15 gene and a genotype distinct from the genotypes of extensively drug-resistant (XDR) isolates from Pakistan. This result suggests a different source and geographical origin of AMR. Genotype 4.3.1 was dominant in all three countries but formed country-specific clusters in the maximum likelihood phylogenetic tree. Thus, multiple independent genetic events leading to ciprofloxacin and ceftriaxone resistance took place in these neighboring regions of Pakistan, Nepal, and Bangladesh. These independent mutational events may enhance the risk of global spread of these highly resistant clones. A short-term global intervention plan is urgently needed. IMPORTANCE Typhoid fever, caused by Salmonella enterica serovar Typhi, is responsible for an estimated burden of approximately 17 million new episodes per year worldwide. Adequate and timely antimicrobial treatment invariably cures typhoid fever. The increasing antimicrobial resistance (AMR) of S Typhi severely limits the treatment options. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh between 1999 and 2013 and compared those sequences with data from a recent outbreak in Pakistan and a laboratory surveillance in Nepal. The analysis suggests that multiple ancestral origins of resistance against ciprofloxacin and ceftriaxone are present in three countries. Such independent genetic events and subsequent dissemination could enhance the risk of a rapid global spread of these highly resistant clones. Given the current treatment challenges, vaccination seems to be the most appropriate short-term intervention to reduce the disease burden of typhoid fever at a time of increasing AMR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app