JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Nano and Microsensors for Mammalian Cell Studies.

Micromachines 2018 August 32
This review presents several sensors with dimensions at the nano- and micro-scale used for biological applications. Two types of cantilever beams employed as highly sensitive temperature sensors with biological applications will be presented. One type of cantilever beam is fabricated from composite materials and is operated in the deflection mode. In order to achieve the high sensitivity required for detection of heat generated by a single mammalian cell, the cantilever beam temperature sensor presented in this review was microprocessed with a length at the microscale and a thickness in the nanoscale dimension. The second type of cantilever beam presented in this review was operated in the resonant frequency regime. The working principle of the vibrating cantilever beam temperature sensor is based on shifts in resonant frequency in response to temperature variations generated by mammalian cells. Besides the cantilever beam biosensors, two biosensors based on the electric cell-substrate impedance sensing (ECIS) used to monitor mammalian cells attachment and viability will be presented in this review. These ECIS sensors have dimensions at the microscale, with the gold films used for electrodes having thickness at the nanoscale. These micro/nano biosensors and their mammalian cell applications presented in the review demonstrates the diversity of the biosensor technology and applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app