Add like
Add dislike
Add to saved papers

On-Chip Asymmetric Microsupercapacitors Combining Reduced Graphene Oxide and Manganese Oxide for High Energy-Power Tradeoff.

Micromachines 2018 August 13
Given the rapid miniaturization of technology, it is of interest to produce viable on-chip micro-electrochemical energy storage systems. In this study, interdigitated asymmetric microsupercapacitors were fabricated using photolithography, lift-off and electrodeposition methods. Manganese oxide (MnOx ) and reduced graphene oxide (rGO) comprised the pseudocapacitive and the double layer component, respectively. Symmetric MnOx //MnOx , rGO//rGO as well as asymmetric rGO//MnOx microsupercapacitors with three different MnOx thicknesses were constructed and characterized in aqueous media. The asymmetric microsupercapacitor with the intermediate MnOx film thickness displayed the optimal energy-power trade-off superior to that of both the symmetric and well as the other asymmetric configurations. The optimal microsupercapacitor exhibited a high stack energy density of 1.02 mWh·cm-3 and a maximal power density of 3.44 W·cm-3 . The high energy-power trade-off of the device is attributed to the synergistic effects of utilizing double layer and pseudocapacitive charge storage mechanisms along with in-plane interdigital microelectrode design within one optimized micro-device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app