Add like
Add dislike
Add to saved papers

Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System.

Aluminum (Al) toxicity and drought are two major constraints on plant growth in acidic soils, negatively affecting crop performance and yield. Genotypic differences in the effects of Al/low pH and polyethyleneglycol (PEG) induced drought stress, applied either individually or in combination, were studied in Tibetan wild (XZ5, drought-tolerant; XZ29, Al-tolerant) and cultivated barley (Al-tolerant Dayton; drought-tolerant Tadmor). Tibetan wild barley XZ5 and XZ29 had significantly higher H⁺-ATPase, Ca2+ Mg2+ -ATPase, and Na⁺K⁺-ATPase activities at pH 4.0+Al+PEG than Dayton and Tadmor. Moreover, XZ5 and XZ29 possessed increased levels in reduced ascorbate and glutathione under these conditions, and antioxidant enzyme activities were largely stimulated by exposure to pH 4.0+PEG, pH 4.0+Al, and pH 4.0+Al+PEG, compared to a control and to Dayton and Tadmor. The activity of methylglyoxal (MG) was negatively correlated with increased levels of glyoxalase (Gly) I and Gly II in wild barley. Microscopic imaging of each genotype revealed DNA damage and obvious ultrastructural alterations in leaf cells treated with drought or Al alone, and combined pH 4.0+Al+PEG stress; however, XZ29 and XZ5 were less affected than Dayton and Tadmor. Collectively, the authors findings indicated that the higher tolerance of the wild barley to combined pH 4.0+Al+PEG stress is associated with improved ATPase activities, increased glyoxalase activities, reduced MG, and lower reactive oxygen species levels (like O₂- and H₂O₂) due to increased antioxidant enzyme activities. These results offer a broad comprehension of the mechanisms implicated in barley's tolerance to the combined stress of Al/low pH and drought, and may provide novel insights into the potential utilization of genetic resources, thereby facilitating the development of barley varieties tolerant to drought and Al/low pH stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app