Add like
Add dislike
Add to saved papers

Modification of mesoporous silica with molecular imprinting technology: A facile strategy for achieving rapid and specific adsorption.

In order to improve the diffusion kinetics of molecularly imprinted materials (MIMs), applying imprinting technology to mesoporous materials is a promising strategy. In the present study, an imprinting approach based on the combination of mesoporous silica materials and molecular imprinting technology is reported. Molecularly imprinted material (MIM) for 2,4-dichlorophenoxyacetic acid (2,4-D) was prepared by using 2,4-D as the template molecule, alkyne-modified β-cyclodextrin and propargyl amine as the combinatorial functional monomers and SBA-15 as the supporter. The functional monomers were anchored to the azide-modified SBA-15 by azide-alkyne Click reaction. The synthesized MIM was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermal gravimetric analysis (TGA), low-angle X-ray diffraction (XRD) and N2 adsorption-desorption analysis. The interactions between template and functional monomers were studied by proton NMR analysis and UV-vis experiments. The results of the equilibrium binding experiments and selective tests showed that the prepared MIM has binding affinity and specificity for a group of analytes which have similar size and shape to those of template. Binding kinetic experiments demonstrated that the present imprinting approach can effectively enhance the mass transfer rate. The solid phase extraction of 2,4-D using MIM as the adsorbent was investigated. The extraction conditions for the processes of loading, washing and eluting were optimized. The recoveries of the molecularly imprinted solid phase extraction (MISPE) column for 2,4-D were 76.3-88.9% with relative standard deviations (RSD) of 3.48-7.64%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app