Add like
Add dislike
Add to saved papers

Characterization of Natural Killer Cells in HIV Patients Beginning Therapy with a High Burden of Cytomegalovirus.

BACKGROUND: Active infections with cytomegalovirus (CMV) increase NK cell expression of the inhibitory receptor LIR-1 and the activating receptor NKG2C in transplant recipients. However, the effects of CMV on NK cells are different in HIV patients stable on antiretroviral therapy (ART) and have not been analyzed in young HIV patients beginning ART.

METHODOLOGY: We followed a cohort of 78 Indonesian HIV patients beginning ART. CMV antibodies were measured in plasma before ART (baseline), and after 1, 3, 6, and 12 months. CMV DNA was sought in blood granulocytes at baseline by quantitative PCR assay and a deletion in the NKG2C gene was identified by PCR. NK cell profiles were monitored by flow cytometry in 19 patients stratified by the presence of CMV DNA. Healthy controls (n = 17) were assessed once.

RESULTS: All 78 patients were CMV seropositive and 41 had detectable CMV DNA. CMV DNA+ patients had higher proportions of total NK cells and CD16+ NK cells at baseline, but similar expression of LIR-1 and NKp30 on NK cells on ART. However, levels of CMV antibody were inversely related to median LIR-1 expression on NK cells. A dramatic elevation in cells expressing NKG2C was restricted to CMV DNA+ patients heterozygous for the NKG2C deletion. Patients with High NKG2C expression had lower levels of CMV antibodies.

CONCLUSION: A subpopulation of NK cells expressing NKG2C was induced by CMV replication in HIV patients heterozygous for a deletion in this gene. Individuals with an abundant NKG2C+ and LIR-1+ NK cells displayed lower levels of CMV reactive antibody.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app