Add like
Add dislike
Add to saved papers

dCas9-mediated Nano-electrohydrodynamic Direct Detection of Target Gene for Liquid Biopsy.

Nano Letters 2018 November 14
The-state-of-the-art bio- and nanotechnology have opened up an avenue to non-invasive liquid biopsy for identifying diseases from biomolecules in bloodstream, especially DNA. In this work, we combined sequence-specific-labeling scheme using mutated Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 without endonuclease activity (CRISPR/dCas9) and ion concentration polarization (ICP) phenomenon as a mechanism to selectively preconcentrate targeted DNA molecules for rapid and direct detection. Theoretical analysis on ICP phenomenon figured out a critical mobility, elucidating two distinguishable concentrating behaviors near a nanojunction; a stacking and a propagating behavior. Through the modulation of the critical mobility to shift those behaviors, the C-C chemokine receptor type 5 (CCR5) sequences were optically detected without PCR amplification. Conclusively, the proposed dCas9-mediated genetic detection methodology based on ICP would provide rapid and accurate micro/nanofluidic platform of liquid biopsies for disease diagnostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app