Add like
Add dislike
Add to saved papers

The X chromosome favors males under sexually antagonistic selection.

The X chromosome is found twice as often in females as males. This has led to an intuition that X-linked genes for traits experiencing sexually antagonistic selection should tend to evolve toward the female optimum. However, this intuition has never been formally examined. In this paper, I present a simple mathematical model and ask whether the X chromosome is indeed biased toward effecting female-optimal phenotypes. Counter to the intuition, I find that the exact opposite bias exists; the X chromosome is revealed to be a welcome spot for mutations that benefit males at the expense of females. Not only do male-beneficial alleles have an easier time of invading and spreading through a population, but they also achieve higher equilibrium frequencies than comparable female-beneficial alleles. The X chromosome is therefore expected over evolutionary time to nudge phenotypes closer to the male optimum. Consequently, the X chromosome should find itself engaged in perpetual intragenomic conflicts with the autosomes and the mitochondria over developmental outcomes. The X chromosome's male bias and the intragenomic conflicts that ensue bear on the evolution of gene regulation, speciation, and our concept of organismality. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app