Add like
Add dislike
Add to saved papers

Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil.

Magma 2018 November 13
INTRODUCTION: We explored the use of a perfluoro-15-crown-5 ether nanoemulsion (PFC) for measuring tissue oxygenation using a mouse model of vascular cognitive impairment.

METHODS: Seventeen C57BL/6 mice underwent stereotactic injection of PFC coupled to a fluorophore into the striatum and corpus callosum. Combined 1H/19F magnetic resonance imaging (MRI) to localize the PFC and R1 mapping to assess pO2 were performed. The effect of gas challenges on measured R1 was investigated. All mice then underwent bilateral implantation of microcoils around the common carotid arteries to induce global cerebral hypoperfusion. 19F-MRI and R1 mapping were performed 1 day, 1 week, and 4 weeks after microcoil implantation. In vivo R1 values were converted to pO2 through in vitro calibration. Tissue reaction to the PFC was assessed through ex vivo immunohistochemistry of microglial infiltration.

RESULTS: R1 increased with increasing oxygen concentrations both in vitro and in vivo and the strength of the 19F signal remained largely stable over 4 weeks. In the two mice that received all four scans, tissue pO2 decreased after microcoil implantation and recovered 4 weeks later. We observed infiltration of the PFC deposits by microglia.

DISCUSSION: Despite remaining technical challenges, intracerebrally injected PFC is suitable for monitoring brain oxygenation in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app