Add like
Add dislike
Add to saved papers

Vestibular Evoked Myographic Correlation.

This work started from the hypothesis that the physiological processes giving rise to the vestibular evoked myogenic potential (VEMP) can be induced not only by transient sounds but also by a continuous stimulation with a stochastic signal. The hypothesis is based on the idea that the number of motor unit action potentials (MUAPs) decreases after a momentary amplitude increase of the effective stimulus, whereas a momentary amplitude decrease has the opposite effect. This concept was theoretically analyzed by assuming that the effective stimulus is closely related to the envelope of the stimulus actually presented. The analysis led to the prediction that the cross-correlation function of the effective stimulus and the measured electromyogram (EMG) has VEMP-like properties. Experiments confirmed this prediction, thus providing evidence of a novel electrophysiological response: the vestibular evoked myographic correlation (VEMCorr). The methodological approach corresponded to a conventional VEMP study, except that the stimulus (delivered with a hand-held minishaker) comprised not only a series of 500-Hz tone pulses (classical VEMP measurement, for comparison) but also sequences of narrow-band noise with a center frequency of 500 Hz (VEMCorr measurement). Each of the 12 test persons showed a clear VEMCorr. Moreover, VEMP and VEMCorr largely resembled each other, as predicted. Apparently they are two different expressions of a more general mechanism that leads to a roughly linear relationship between stimulus envelope and expectation of the EMG. Future applications of the VEMCorr could exploit that a continuous-stimulation paradigm allows for varying the center frequency of the stimulus without changing the relative bandwidth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app