Add like
Add dislike
Add to saved papers

Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex.

Lab on a Chip 2018 November 14
This paper reports an electrically reconfigurable optofluidic lens with two air-liquid (silicone oil) interfaces actuated by dielectrophoretic (DEP) force. Initially, a symmetric biconcave air-liquid lens is formed by the surface tension in a microfluidic chip. Then, the DEP force deforms the air-liquid interfaces from biconcave to biconvex, tuning the focal length from -0.5 mm to infinite to +0.5 mm. The wide tunability of the focal length results from the large refractive index difference (∼0.4 at the air-liquid interface), which is only 0.1 in previous liquid-liquid lenses. In the experiment, the lens achieves an ƒ number of 0.91 while consuming only 6.7 nJ per circle. Some asymmetric working states, such as concave-convex and plano-convex lenses, have also been demonstrated. Compared with continuous liquid flow-sustained lenses, this stationary liquid lens holds promise of better compatibility and higher scalability. Its wide tunability, low power consumption and easy operation make it suitable for light manipulation in microfluidic networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app