Add like
Add dislike
Add to saved papers

Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.

Protein secondary structure prediction (PSSP) is an important research field in bioinformatics. The representation of protein sequence features could be treated as a matrix, which includes the amino-acid residue (time-step) dimension and the feature vector dimension. Common approaches to predict secondary structures only focus on the amino-acid residue dimension. However, the feature vector dimension may also contain useful information for PSSP. To integrate the information on both dimensions of the matrix, we propose a hybrid deep learning framework, two-dimensional convolutional bidirectional recurrent neural network (2C-BRNN), for improving the accuracy of 8-class secondary structure prediction. The proposed hybrid framework is to extract the discriminative local interactions between amino-acid residues by two-dimensional convolutional neural networks (2DCNNs), and then further capture long-range interactions between amino-acid residues by bidirectional gated recurrent units (BGRUs) or bidirectional long short-term memory (BLSTM). Specifically, our proposed 2C-BRNNs framework consists of four models: 2DConv-BGRUs, 2DCNN-BGRUs, 2DConv-BLSTM and 2DCNN-BLSTM. Among these four models, the 2DConv- models only contain two-dimensional (2D) convolution operations. Moreover, the 2DCNN- models contain 2D convolutional and pooling operations. Experiments are conducted on four public datasets. The experimental results show that our proposed 2DConv-BLSTM model performs significantly better than the benchmark models. Furthermore, the experiments also demonstrate that the proposed models can extract more meaningful features from the matrix of proteins, and the feature vector dimension is also useful for PSSP. The codes and datasets of our proposed methods are available at https://github.com/guoyanb/JBCB2018/ .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app