Add like
Add dislike
Add to saved papers

Growth, antioxidant capacity, intestinal morphology, and metabolomic responses of juvenile Oriental river prawn (Macrobrachium nipponense) to chronic lead exposure.

Chemosphere 2018 November 7
Understanding the mechanisms of metal toxicity to organisms farmed for food may suggest mitigation strategies. We determined the 24-, 48-, 72-, and 96-h median lethal concentrations of lead in juvenile oriental river prawn (Macrobrachium nipponense). The prawns were then exposed to sub-lethal concentrations (13.13 and 26.26 μg/L) of lead for 60 days and growth, antioxidant enzyme activity, intestinal morphology, and metabolite profiles were assessed. Prawns exposed to 26.26 μg/L but not to 13.13 μg/L lead exhibited lower weight gain than controls. The lead burden in muscle was 0.067 and 0.25 μg/g of dry weight exposed to 13.13 and 26.26 μg/L, respectively. Levels of glutamic oxaloacetic transaminase and glutamic-pyruvic transaminase were not altered following exposure. Exposure increased malondialdehyde activity in the hepatopancreas and decreased superoxide dismutase and glutathione peroxidase activities. Catalase activity first increased and then decreased as lead concentrations increased. Some intestinal epithelial cells disassociated from the basement membrane in prawns exposed to 13.13 μg/L lead. Intestinal epithelial cells in prawns exposed to 26.26 μg/L lead separated completely from the basement membrane. Gas chromatography-mass spectrometry metabolomics assays showed the 13.13-μg/L exposure did not elicit significant metabolic alterations. Exposure to 26.26 μg/L lead differentially up-regulated 58 metabolites and down-regulated 21 metabolites. The metabolites identified were involved in galactose, purine, glutathione, and carbon metabolism, biosynthesis of amino acids and steroids, and neuroactive ligand-receptor interaction. These data indicate that chronic lead exposure can adversely affect growth, increase accumulation in muscle, impair intestinal morphology, and induce oxidant stress or neurotoxicity-related effects in M. nipponense.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app