Add like
Add dislike
Add to saved papers

Oscillations in working memory and neural binding: A mechanism for multiple memories and their interactions.

Neural oscillations have been recorded and implicated in many different basic brain and cognitive processes. For example, oscillatory neural activity has been suggested to play a role in binding and in the maintenance of information in working memory. With respect to the latter, the majority of work has focused primarily on oscillations in terms of providing a "code" in working memory. However, oscillations may additionally play a fundamental role by enabling or facilitating essential properties and behaviors that neuronal networks must exhibit in order to produce functional working memory and the processes it supports, such as combining items in memory into bound objects or separating bound objects into distinct items. In the present work, we present a biologically plausible working memory model and demonstrate that specific types of stable oscillatory dynamics that arise may play critical roles in providing mechanisms for working memory and the cognitive functions that it supports. Specifically, these roles include (1) enabling a range of different types of binding, (2) both enabling and limiting capacities of bound and distinct items held active in working memory, and (3) facilitating transitions between active working memory states as required in cognitive function. Several key results arise within the examinations, such as the occurrence of different network capacities for working memory and binding, differences in processing times for transitions in working memory states, and the emergence of a combinatorially rich and complex range of oscillatory states that are sufficient to map onto a wide range of cognitive operations supported by working memory, such as variable binding, reasoning, and language. In particular, we show that these oscillatory states and their transitions can provide a specific instantiation of current established connectionist models in representing these functions. Finally, we further characterize the dependence of the relevant oscillatory solutions on certain critical parameters, including mutual inhibition and synaptic timescales.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app