Add like
Add dislike
Add to saved papers

Multistability of Switched Neural Networks With Piecewise Linear Activation Functions Under State-Dependent Switching.

This paper is concerned with the multistability of switched neural networks with piecewise linear activation functions under state-dependent switching. Under some reasonable assumptions on the switching threshold and activation functions, by using the state-space decomposition method, contraction mapping theorem, and strictly diagonally dominant matrix theory, we can characterize the number of equilibria as well as analyze the stability/instability of the equilibria. More interesting, we can find that the switching threshold plays an important role for stable equilibria in the unsaturation regions of activation functions, and the number of stable equilibria of an n-neuron switched neural network with state-dependent parameters increases to 3ⁿ from 2ⁿ in the conventional one. Furthermore, for two-neuron switched neural networks, the precise attraction basin of each stable equilibrium point can be figured out, and its boundary is composed of the stable manifolds of unstable equilibrium points and the switching lines. Two simulation examples are discussed in detail to substantiate the effectiveness of the theoretical analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app