Add like
Add dislike
Add to saved papers

Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components.

This paper investigates the complex dynamics of a Harrison-type predator-prey model that incorporating: (1) A constant time delay in the functional response term of the predator growth equation; and (2) environmental noise in both prey and predator equations. We provide the rigorous results of our model including the dynamical behaviors of a positive solution and Hopf bifurcation. We also perform numerical simulations on the effects of delay or/and noise when the corresponding ODE model has an interior solution. Our theoretical and numerical results show that delay can either remain stability or destabilize the model; large noise could destabilize the model; and the combination of delay and noise could intensify the periodic instability of the model. Our results may provide us useful biological insights into population managements for prey-predator interaction models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app