Add like
Add dislike
Add to saved papers

The role of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptors-α in mediating the antinociceptive effects of palmitoylethanolamine in rats.

Neuroreport 2019 January 3
Palmitoylethanolamine (PEA) is a ligand at peroxisome proliferator-activated receptors-α (PPARα), a nuclear receptor that has anti-inflammatory effects. Herein, complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats and in-vitro calcium imaging studies were used to evaluate the mechanisms that underlie the antinociceptive effects of PEA, including modulating the activity of the transient receptor potential vanilloid receptor 1, which is a key receptor involved in the development of inflammatory pain. Adult male Sprague-Dawley rats (180-250 g) received subcutaneous injections of CFA (0.1 ml) into the plantar surface of the left hind paw. Von Frey filaments were used to determine the paw withdrawal threshold. PEA (50 µg), WY14643 (50 µg, a selective PPARα agonist) were injected into the plantar surface of the left hind paw at day 7 after CFA injection, and behavioral tests were repeated 6 h after drug administration. Rats were killed and dorsal root ganglia neurons were dissected and prepared for calcium imaging. Neurons were loaded with the calcium-sensitive ratiometric dye Fura-2AM. Changes in [Ca]i were measured as ratios of peak florescence at excitation wavelengths of 340 and 380 nm and expressed as a percentage of the KCl (60 mM) response. Both PEA and WY14643 significantly restored the paw withdrawal threshold in a PPARα-dependent fashion (P<0.01). Capsaicin of 15 nM produced 63.9±13.4% of KCl response. Preincubation of dorsal root ganglia neurons with PEA 6 h before stimulation with capsaicin, significantly reduce capsaicin-evoked calcium responses (42.9±6.4% of KCl response, n=54, P<0.001). In conclusion, modulating transient receptor potential vanilloid receptor 1 activity could provide the mechanism that underlies PEA antinociceptive effects observed in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app