Add like
Add dislike
Add to saved papers

The effect of aerosolized indomethacin on lung inflammation and injury in a rat model of blunt chest trauma

Background: Acute lung contusion from blunt chest trauma (BCT) is characterized by an intense inflammatory response in the pulmonary parenchyma, which is associated with acute lung injury (ALI), acute respiratory distress syndrome and ventilator-associated pneumonia. We hypothesized that aerosolized indomethacin may reduce pulmonary inflammation and ALI in a rat model of BCT.

Methods: Sprague-Dawley rats were anesthetized and received a tracheotomy for administration of aerosolized medication through a catheter. The BCT procedure involved free-dropping a hollow metal weight (200 g) from a height of 25.5, 38.3 or 51.2 cm onto the right thorax. We administered 1 mg/kg of indomethacin or 1 mL/kg of saline intratracheally 15 minutes after BCT. The sham group had a similar procedure without the exposure to BCT and treatment. Three hours postimpact, we obtained arterial blood gas and analyzed bronchoalveolar lavage for protein concentration, polymorphonuclear leukocytes (PMN) and cytokine levels, and lung tissue samples were taken for histopathological analysis.

Results: The rats’ mean arterial pressure and heart rate dropped immediately postimpact but recovered close to that of the sham group after 30 minutes in both control and treatment groups. Compared to BCT alone, indomethacin significantly reduced the total protein level in the lungs (1.06 ± 0.39 mg/mL v. 3.75 ± 1.95 mg/mL, p = 0.006) and alveolar FD-70 leak (0.23 ± 0.19 μg/mL v. 0.53 ± 0.19 μg/mL, p = 0.02). Indomethacin also significantly attenuated the acute inflammatory response in percent PMN (13.33 ±7.5% v. 28.0 ± 12.96%, p = 0.04). Tumour necrosis factor-α and interleukin-6 decreased in the indomethacin group, but the decreases were not significant compared with other groups.

Conclusion: Aerosolized indomethacin has a protective effect against alveloar tissue permeability and inflammatory response induced by BCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app