Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Single-cell RNA Sequencing of Fluorescently Labeled Mouse Neurons Using Manual Sorting and Double In Vitro Transcription with Absolute Counts Sequencing (DIVA-Seq).

Single-cell RNA sequencing (RNA-seq) is now a widely implemented tool for assaying gene expression. Commercially available single-cell RNA-sequencing platforms process all input cells indiscriminately. Sometimes, fluorescence-activated cell sorting (FACS) is used upstream to isolate a specifically labeled population of interest. A limitation of FACS is the need for high numbers of input cells with significantly labeled fractions, which is impractical for collecting and profiling rare or sparsely labeled neuron populations from the mouse brain. Here, we describe a method for manually collecting sparse fluorescently labeled single neurons from freshly dissociated mouse brain tissue. This process allows for capturing single-labeled neurons with high purity and subsequent integration with an in vitro transcription-based amplification protocol that preserves endogenous transcript ratios. We describe a double linear amplification method that uses unique molecule identifiers (UMIs) to generate individual mRNA counts. Two rounds of amplification results in a high degree of gene detection per single cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app