Add like
Add dislike
Add to saved papers

Enzymatic Reaction Generates Biomimic Nanominerals with Superior Bioactivity.

Small 2018 November 13
In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery. Herein, an in vitro enzymatic reaction strategy is reported for the generation of biomimic amorphous calcium phosphate (EACP) nanominerals by an alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) in a weakly alkalescent aqueous condition (pH 8.0-8.5), which is partially similar to the mitochondrial environment. Significantly, the EACP nanomineral obviously promotes autophagy and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by activating an AMPK related pathway, and displays a high performance in promoting bone regeneration. These results provide in vitro evidence for the effect of ATP on the formation and stabilization of the mineral in the mineralization process, demonstrating a potential strategy for the preparation of the biomimic mineral for treating bone related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app