Add like
Add dislike
Add to saved papers

Ionic-Liquid Doping Enables High Transconductance, Fast Response Time, and High Ion Sensitivity in Organic Electrochemical Transistors.

Advanced Materials 2018 November 13
Organic electrochemical transistors (OECTs) are highly attractive for applications ranging from circuit elements and neuromorphic devices to transducers for biological sensing, and the archetypal channel material is poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS. The operation of OECTs involves the doping and dedoping of a conjugated polymer due to ion intercalation under the application of a gate voltage. However, the challenge is the trade-off in morphology for mixed conduction since good electronic charge transport requires a high degree of ordering among PEDOT chains, while efficient ion uptake and volumetric doping necessitates open and loose packing of the polymer chains. Ionic-liquid-doped PEDOT:PSS that overcomes this limitation is demonstrated. Ionic-liquid-doped OECTs show high transconductance, fast transient response, and high device stability over 3600 switching cycles. The OECTs are further capable of having good ion sensitivity and robust toward physical deformation. These findings pave the way for higher performance bioelectronics and flexible/wearable electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app