Add like
Add dislike
Add to saved papers

The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana.

Iron (Fe) is a micronutrient that is essential for plant development and growth. Basic helix-loop-helix (bHLH) transcription factors are a superfamily of transcription factors that are important regulatory components in transcriptional networks in plants. bHLH transcription factors have been divided into subclasses based on their amino acid sequences and domain structures. Among the members of clade IVb (PYE, bHLH121, and bHLH11), the functions of bHLH11 remain unclear. In the present study, we characterized bHLH11 as a negative regulator of Fe homeostasis. bHLH11 expression levels were high in the roots and up-regulated after plants were transferred to Fe sufficient conditions. Although T-DNA knockout mutants of bHLH11 were lethal, dominant negative (DN-) and overexpression (OX-) of bHLH11 plants exhibited sensitivity to Fe deficiency. Furthermore, the expression of FIT, a master regulator of Fe deficiency responses, was suppressed in the transgenic plants. These results suggest that the transcriptional repressor bHLH11 functions as a negative regulator of FIT-dependent Fe uptake and modulates Fe levels in Arabidopsis plants. Salicylic acid (SA) modulates the expression of genes involved in Fe-deficient responses. We found that SA levels were elevated in DN- and OX-bHLH11 plants. The T-DNA insertion mutant sid2-1, which was defective for the production of SA, did not exhibit sensitivity to Fe deficiency; however, the crossed plants of OX-bHLH11 and sid2-1 relieved sensitivity to the Fe deficiency observed in OX-bHLH11 plants. These results suggest that the accumulation of SA is closely related to iron homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app