Add like
Add dislike
Add to saved papers

Anti-ICOSL New Antigen Receptor Domains Inhibit T Cell Proliferation and Reduce the Development of Inflammation in the Collagen-Induced Mouse Model of Rheumatoid Arthritis.

Lymphocyte costimulation plays a central role in immunology, inflammation, and immunotherapy. The inducible T cell costimulator (ICOS) is expressed on T cells following peptide: MHC engagement with CD28 costimulation. The interaction of ICOS with its sole ligand, the inducible T cell costimulatory ligand (ICOSL; also known as B7-related protein-1), triggers a number of key activities of T cells including differentiation and cytokine production. Suppression of T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity. In this study, we isolated specific anti-ICOSL new antigen receptor domains from a synthetic phage display library and demonstrated their ability to block the ICOS/ICOSL interaction and inhibit T cell proliferation. Anti-mouse ICOSL domains, considered here as surrogates for the use of anti-human ICOSL domains in patient therapy, were tested for efficacy in a collagen-induced mouse model of rheumatoid arthritis where they significantly decreased the inflammation of joints and delayed and reduced overall disease progression and severity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app