Add like
Add dislike
Add to saved papers

Development of underwater radiography scanner for reactor-pool experiment at the TRIGA PUSPATI reactor.

This paper describes the development of a custom-designed underwater scanner to support the experimental works for characterizing irradiated fuel stored in the TRIGA PUSPATI pool by means of radiography technique. Materials used to build the scanner are aluminum 6061, lead and teflon. Three main units that make up the scanner are rig structure, arm block and collimator. Collimator is designed to control radiation exposure by opening and closing the shutter. The experimental works were conducted underwater at 5-m depth hence water tightness is one of the main design criteria. Radiation in terms of gamma energy is captured by radiography film which after development and processing revealed the image of the radiation impact in terms of pixel and gray value. The film size used is 4in x 8in which was slot in the collimator. To validate the scanner, fuel element containing 8.5 wt% and 12 wt% enriched Uranium 235 were used. It was found that the experimental output is consistent with the fuel type and confirmed that the scanner is viable for fuel characterization study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app