Add like
Add dislike
Add to saved papers

Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning.

This paper describes a new image generation algorithm based on generative adversarial network. With an information-theoretic extension to the autoencoder-based discriminator, this new algorithm is able to learn interpretable representations from the input images. Our model not only adversarially minimizes the Wasserstein distance-based losses of the discriminator and generator but also maximizes the mutual information between small subset of the latent variables and the observation. We also train our model with proportional control theory to keep the equilibrium between the discriminator and the generator balanced, and as a result, our generative adversarial network can mitigate the convergence problem. Through the experiments on real images, we validate our proposed method, which can manipulate the generated images as desired by controlling the latent codes of input variables. In addition, the visual qualities of produced images are effectively maintained, and the model can stably converge to the equilibrium. However, our model has a difficulty in learning disentangling factors because our model does not regularize the independence between the interpretable factors. Therefore, in the future, we will develop a generative model that can learn disentangling factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app