Add like
Add dislike
Add to saved papers

Modulation of luminal L-alanine transport in proximal tubular cells of frog kidney induced by low micromolar Cd 2+ concentration.

The kidneys are recognized as a major target of cadmium-induced toxicity. However, all mechanisms that are involved in the early stages of cadmium nephrotoxicity, particularly considering low micromolar concentrations of cadmium ions (Cd2+ ) are still unknown. Therefore, the aim of this study was to investigate the effects of peritubular acute exposure to micromolar Cd2+ concentration (2.3 μmol/L) on the rapid depolarization and the rate of slow repolarization of peritubular membrane potential difference (PD), induced by luminal application of L-alanine in proximal tubular cells of frog kidney. The results showed that the luminal application of L-alanine rapidly depolarized the peritubular membrane PD of -42.00 ± 11.68 mV by 23.89 ± 4.15 mV with an average rate of slow repolarization of 5.64 ± 0.81 mV/min. Additionally, peritubular acute exposure to Cd2+ induced change in rapid depolarization of peritubular membrane PD of -53.33 ± 13.01 mV by 18.78 ± 3.31 mV (P < 0.01) after luminal application of L-alanine. Also, peritubular acute exposure to Cd2+ led to statistically significant decrease in the rate of slow repolarization of peritubular membrane PD (3.53 ± 0.35 mV/min; P < 0.05). In conclusion, these results suggest that peritubular acute exposure to low micromolar Cd2+ concentration decreased the rapid depolarization and the rate of slow repolarization of peritubular membrane PD induced by luminal application of L-alanine. This is followed by reduced luminal sodium-coupled transport of L-alanine and this change may be one of the possible mechanisms involved in the early stages of Cd2+ -induced nephrotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app