Add like
Add dislike
Add to saved papers

The Min Oscillator Defines Sites of Asymmetric Cell Division in Cyanobacteria during Stress Recovery.

Cell Systems 2018 November 29
When resources are abundant, many rod-shaped bacteria reproduce through precise, symmetric divisions. However, realistic environments entail fluctuations between restrictive and permissive growth conditions. Here, we use time-lapse microscopy to study the division of the cyanobacterium Synechococcus elongatus as illumination intensity varies. We find that dim conditions produce elongated cells whose divisions follow a simple rule: cells shorter than ∼8 μm divide symmetrically, but above this length divisions become asymmetric, typically producing a short ∼3-μm daughter. We show that this division strategy is implemented by the Min system, which generates multi-node patterns and traveling waves in longer cells that favor the production of a short daughter. Mathematical modeling reveals that the feedback loops that create oscillatory Min patterns are needed to implement these generalized cell division rules. Thus, the Min system, which enforces symmetric divisions in short cells, acts to strongly suppress mid-cell divisions when S. elongatus cells are long.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app