Add like
Add dislike
Add to saved papers

Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation.

Streptococcus gordonii is commonly found in the periapical endodontic lesions of patients with apical periodontitis, a condition characterized by inflammation and periapical bone loss. Since bone metabolism is controlled by osteoclastic bone resorption and osteoblastic bone formation, we investigated the effects of S. gordonii on the differentiation and function of osteoclasts and osteoblasts. For the determination of bone resorption activity in vivo, collagen sheets soaked with heat-killed S. gordonii were implanted on mouse calvaria, and the calvarial bones were scanned by micro-computed tomography. Mouse bone marrow-derived macrophages (BMMs) were stimulated with M-CSF and RANKL for 2 days and then differentiated into osteoclasts in the presence or absence of heat-killed S. gordonii. Tartrate-resistant acid phosphatase staining was performed to determine osteoclast differentiation. Primary osteoblast precursors were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the presence or absence of heat-killed S. gordonii. Alkaline phosphatase staining and alizarin red S staining were conducted to determine osteoblast differentiation. Western blotting was performed to examine the expression of transcription factors including c-Fos, NFATc1, and Runx2. Heat-killed S. gordonii induced bone destruction in a mouse calvarial implantation model. The differentiation of RANKL-primed BMMs into osteoclasts was enhanced in the presence of heat-killed S. gordonii. Heat-killed S. gordonii increased the expression of c-Fos and NFATc1, which are essential transcription factors for osteoclast differentiation. On the other hand, heat-killed S. gordonii inhibited osteoblast differentiation and reduced the expression of Runx2, an essential transcription factor for osteoblast differentiation. S. gordonii exerts bone resorptive activity by increasing osteoclast differentiation and reducing osteoblast differentiation, which may be involved in periapical bone resorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app