JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitochondrial DNA haplogroups and age at onset of Machado-Joseph disease/spinocerebellar ataxia type 3: a study in patients from multiple populations.

BACKGROUND AND PURPOSE: Mitochondrial dysfunction has been implicated in the pathogenesis of several neurodegenerative disorders, including Machado-Joseph disease (MJD), an autosomal dominant late-onset polyglutamine ataxia that results from an unstable expansion of a CAG tract in the ATXN3 gene. The size of the CAG tract only partially explains age at onset (AO), highlighting the existence of disease modifiers. Mitochondrial DNA (mtDNA) haplogroups have been associated with clinical presentation in other polyglutamine disorders, constituting potential modifiers of MJD phenotype.

METHODS: A cross-sectional study, using 235 unrelated patients from Portugal, Brazil, India and Japan, was performed to investigate if mtDNA haplogroups contribute to AO of MJD. mtDNA haplogroups were obtained after sequencing the mtDNA hypervariable region I. Patients were classified in 15 phylogenetically related haplogroup clusters.

RESULTS: The AO was significantly different among populations, implying the existence of other non-CAG factors, which seem to be population specific. In the Portuguese population, patients classified as belonging to haplogroup JT presented the earliest onset (estimated onset 34.6 years of age). Haplogroups W and X seem to have a protective effect, causing a delay in onset (estimated onset 47 years of age). No significant association between haplogroup clusters and AO was detected in the other populations or when all patients were pooled. Although haplogroup JT has already been implicated in other neurodegenerative disorders, no previous reports of an association between haplogroups W and X and disease were found.

CONCLUSIONS: These findings suggest that haplogroups JT, W and X modify AO in MJD. Replication studies should be performed in European populations, where the frequency of the candidate modifiers is similar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app