Add like
Add dislike
Add to saved papers

On the inverse energy transfer in rotating turbulence.

Rotating turbulence is an example of a three-dimensional system in which an inverse cascade of energy, from the small to the large scales, can be formed. While usually understood as a byproduct of the typical bidimensionalization of rotating flows, the role of the three-dimensional modes is not completely comprehended yet. In order to shed light on this issue, we performed direct numerical simulations of rotating turbulence where the 2D modes falling in the plane perpendicular to rotation are removed from the dynamical evolution. Our results show that while the two-dimensional modes are key to the formation of a stationary inverse cascade, the three-dimensional degrees of freedom play a non-trivial role in bringing energy to the larger scales also. Furthermore, we show that this backwards transfer of energy is carried out by the homochiral channels of the three-dimensional modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app