Add like
Add dislike
Add to saved papers

Mechanical Properties of U-Cu Intermetallic Compound Measured by Nanoindentation.

Materials 2018 November 9
The physico-chemical properties of the Uranium intermetallic compound are of technological importance for improvement of the safety and compatibility of nuclear engineering systems. Diffusion couple samples with U and Cu were assembled and U-Cu intermetallic compounds were fabricated at interface by hot pressure diffusion method at a treatment temperature of 350 °C to 650 °C and at a pressure of 168 MPa in a vacuum furnace. The microstructure and element distribution of the compound phase have been studied by means of SEM, EDS, and XRD. The result showed that a new phase was developed to a thickness of approximately 10 μm with a ration of U:Cu with 1:5. Mechanical properties such as elastic moduli and hardness of the compound have been studied by means of nanoindentation. The nanoindentation testing on sample indicated that hardness of Uranium intermetallic compound are higher than that of metal U and Cu. Uranium intermetallic compound and U have a Young's moduli with 121 GPa, 160 GPa respectively. The elastic/plastic responses of U-Cu intermetallic compound and U under nanoindentation tests were also discussed in detail.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app