Add like
Add dislike
Add to saved papers

Single-Molecule Studies of Allosteric Inhibition of Individual Enzyme on a DNA Origami Reactor.

Unraveling the conformational changes of enzymes together with inhibition kinetics during an enzymatic reaction has great potential in screening therapeutic candidates; however, it remains challenging due to the transient nature of each intermediate step. We report our study on the noncompetitive inhibition of horseradish peroxidase with single-turnover resolution using single-molecule fluorescence microscopy. By introducing DNA origami as an addressable nanoreactor, we observe the coexistence of nascent-formed fluorescent product on both catalytic and docking sites. We further propose a single-molecule kinetic model to reveal the interplay between product generation and noncompetitive inhibition and find three distinct inhibitor releasing pathways. Moreover, the kinetic isotope effect experiment indicates a strong correlation between catalytic and docking sites, suggesting an allosteric conformational change in noncompetitive inhibition. A memory effect is also observed. This work provides an in-depth understanding of the correlation between enzyme behavior and enzymatic conformational fluctuation, substrate conversion, and product releasing pathway and kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app