Add like
Add dislike
Add to saved papers

Proteomic Analysis of Larval Integument in a Dominant Obese Translucent (Obs) Silkworm Mutant.

The dominant obese translucent (Obs) mutant of the silkworm (Bombyx mori) results in a short and stout larval body, translucent phenotype, and abnormal pigmentation in the integument. The Obs mutant also displays deficiency in ecdysis and metamorphosis. In the present study, to gain an understanding of multiple Obs phenotypes, we investigated the phenotypes of Obs and performed a comparative analysis of the larval integument proteomes of Obs and normal silkworms. The phenotypic analysis revealed that the Obs larvae were indeed short and fat, and that chitin and uric acid content were lower but melanin content was higher in the Obs mutant. Proteomic analysis revealed that 244 proteins were significantly differentially expressed between Obs and normal silkworms, some of which were involved in uric acid metabolism and melanin pigmentation. Twenty-six proteins were annotated as cuticular proteins, including RR motif-rich cuticular proteins (CPR), glycine-rich cuticular protein (CPG), hypothetical cuticular protein (CPH), cuticular protein analogous to peritrophins (CPAPs), and the chitin_bind_3 motif proteins, and accounted for over 84% of the abundance of the total significantly differentially expressed proteins. Moreover, 22 of the 26 cuticular proteins were downregulated in the Obs mutant. Comparative proteomic analysis suggested that the multiple phenotypes of the Obs mutant might be related to changes in the expression of proteins that participate in cuticular formation, uric acid metabolism, and melanin pigmentation. These results could lay a basis for further identification of the gene responsible for the Obs mutant. The data have been deposited to ProteomeXchange with identifier PXD010998.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app