Add like
Add dislike
Add to saved papers

Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US.

Ecology Letters 2018 November 9
Severe droughts can impart long-lasting legacies on forest ecosystems through lagged effects that hinder tree recovery and suppress whole-forest carbon uptake. However, the local climatic and edaphic factors that interact to affect drought legacies in temperate forests remain unknown. Here, we pair a dataset of 143 tree ring chronologies across the mesic forests of the eastern US with historical climate and local soil properties. We found legacy effects to be widespread, the magnitude of which increased markedly in diffuse porous species, sites with deep water tables, and in response to late-season droughts (August-September). Using an ensemble of downscaled climate projections, we additionally show that our sites are projected to drastically increase in water deficit and drought frequency by the end of the century, potentially increasing the size of legacy effects by up to 65% and acting as a significant process shaping forest composition, carbon uptake and mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app