Add like
Add dislike
Add to saved papers

Aqueous MEA and Ammonia Sorption-Induced Damage in Keratin Fibers.

ACS Omega 2018 October 32
The sorption of aqueous monoethanolamine (MEA) and ammonia solutions in keratin fibers and its subsequent effect on their mechanical performance has been investigated. The diffusion kinetics of MEA into keratin fibers for 0.1, 1.0, and 5 v/v % MEA in water at 30 and 50 °C were found to exhibit two clear regimes of absorption behavior: a linear Fickian diffusion regime for initial times up to 100 min, after which a second slower uptake process was observed. Single fiber tensile tests showed that the Young's modulus and the tensile failure stress for 5% MEA-treated fibers, compared to untreated fibers, were 25% lower after 1 h of treatment and 50% lower after 9 h of treatment. Aqueous treatments of 0.1 and 1% MEA, as well as 0.6 and 3% aqueous ammonia, had no measurable effect on either Young's modulus or tensile failure stress for the fibers. Scanning electron microscopy images and protein content analysis confirmed that keratin fibers exposed to 5% MEA solution exhibited significant surface damage as well as high levels of protein loss. This study confirms for the first time the important damage hair treatments containing 5% aqueous MEA can cause on keratin fibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app