Add like
Add dislike
Add to saved papers

Transport Properties of Commercial Cellulose Nanocrystals in Aqueous Suspension Prepared from Chemical Pulp via Sulfuric Acid Hydrolysis.

ACS Omega 2018 October 32
A cellulose nanocrystal (CNC) sample prepared from chemical pulp via sulfuric acid hydrolysis procedures has been supplied by InnoTech Alberta Inc. in the shape of white dry powder as a prototype product. Some transport coefficients were precisely investigated for the CNC sample in aqueous suspensions at the room temperature of 25 °C such as the average rotational and translational diffusion coefficients ( D r and D t ) and viscoelastic relaxation times (τv ) at dilute conditions. The determined values, D r ≈ 2.3 × 103 s-1 and D t ≈ 1.0 × 10-11 m2 s-1 , using depolarized and usual dynamic light scattering (DLS) techniques, respectively, proposed the consistent length and width of L ≈ 170 nm and W ≈ 7.6 nm via a theoretical model for monodisperse rigid rods dispersed in pure water. The viscoelastic behavior for aqueous CNC suspensions containing spherical probe particles was examined using DLS rheological techniques. The obtained value of τv = 1.0 × 10-4 s fairly agrees with that of (6 D r )-1 ≈ 7.4 × 10-5 s. Because the theoretical model for monodisperse rods denotes the relationship τv = (6 D r )-1 , this observation strongly confirms that the CNC sample behaves as approximately monodisperse rigid rodlike particles. Transmission electron microscopy (TEM) images clearly demonstrated a bimodal distribution in rod length with major and small minor peaks at ca. 150 and 240 nm, respectively. Then, the reason for the observed disagreement between the L values resulted from the transport coefficients and the major peak in TEM images is the presence of the small minor component with L ≈ 240 nm. Consequently, individual nanosize rodlike crystalline particles in the CNC sample well disperse without forming large aggregations because of strong interactions and behave as isolated individual rods in dilute aqueous suspensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app