Add like
Add dislike
Add to saved papers

Combining Breath Figures and Supercritical Fluids To Obtain Porous Polymer Scaffolds.

ACS Omega 2018 October 32
Supercritical fluids technology is a clean methodology to foam polymeric materials. However, this technique provides only the formation of inner porosity, whereas the so-called skin layer is commonly observed at the polymer surface. This article describes a new method for the preparation of outer and inner porous poly(ε-caprolactone) (PCL) scaffolds by combination of supercritical CO2 (SCCO2 ) foaming and the breath figures technique. In the first step, experiments with a SCCO2 reactor were performed at 35-45 °C, 100-250 bar, and 1-20 min depressurization time. The effect of these parameters in the formation of inner porosity was investigated for an adequate optimization. In a late stage, to provide also surface porosity to the polymeric samples and remove the skin layer, the breath figures technique was employed. The evaluation of porosity was determined by scanning electronic microscopy, mercury porosimetry, and micro X-ray computerized tomography scanning processing the images obtained with the ImageJ software. The results of this study using these two complementary techniques showed the existence of interconnectivity between inner and outer porosity of the samples. Furthermore, thermal transitions and crystallinity of the PCL samples have been analyzed by differential scanning calorimetry. Finally, a preliminary biological evaluation of the resulting scaffolds with mouse endothelial cells (C166-GFP) was performed to assess their biocompatibility and cellular viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app