Add like
Add dislike
Add to saved papers

Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii .

FEBS Open Bio 2018 November
Heterosis improves growth and survival of shellfish species. Although breeders have widely exploited heterosis, its underlying molecular mechanisms remain unclear. In this study, a 2 × 2 complete diallel cross was facilitated between two full-sib families to produce two inbred families (A and D) and their reciprocal hybrid families (B and C) of pearl oyster Pinctada fucata martensii . Growth traits of the four families were compared at the adult stages. Transcriptome analysis was conducted on the four families using an Illumina sequencing platform. The results revealed that the growth traits of the four families significantly varied ( P  <   0.05). The mid-parent heterosis values of shell length, shell height, shell width, shell weight, and total weight were 12.9%, 14.9%, 18.2%, 17.2%, and 33.2%, respectively. The B- and C-inbred (A and D) triads had 79 and 68 differentially expressed genes (DEGs), respectively, which were dominantly nonadditive, including overdominance, underdominance, and low-parent dominance. Gene ontology term analysis showed that the DEGs in the B- and C-inbred triads were enriched for metabolic process, cellular process cell part, binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs in the B- and C-inbred triads were involved in focal adhesion, the P13K-Akt signaling pathway, the mRNA surveillance pathway, and the focal adhesion pathway. The reliability of the sequencing data was confirmed by real-time polymerase chain reaction analysis of six growth-related genes. The findings of this study provide new insights into heterosis for growth traits and the design of genetic breeding programs for this species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app