CASE REPORTS
JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Intraoperative Imaging and Image Fusion for Venous Interventions.

Advanced imaging for intraoperative evaluation of venous pathologies has played an increasingly significant role in this era of evolving minimally invasive surgical and interventional therapies. The evolution of dedicated venous stents and other novel interventional devices has mandated the need for advanced imaging tools to optimize safe and accurate device deployment. Most venous interventions are typically performed using a combination of standard 2-dimensional (2D) fluoroscopy, digital-subtraction angiography, and intravascular ultrasound imaging techniques. Latest generation computer tomography (CT) and magnetic resonance imaging (MRI) scanners have been shown to provide high-resolution 3D and 4D information about venous vasculature. In addition to morphological imaging, novel MRI techniques such as 3D time-resolved MR venography and 4D flow sequences can provide quantitative information and help visualize intricate flow patterns to better understand complex venous pathologies. Moreover, the high-fidelity information from multiple imaging techniques can be integrated using image fusion to overcome the limitations of current intraoperative imaging techniques. For example, the limitations of standard 2D fluoroscopy and luminal angiography can be compensated for by perivascular and soft-tissue information from MRI during complex venous interventions using image fusion techniques. Intraoperative dynamic evaluation of devices such as venous stents and real-time understanding of changes in flow patterns during venous interventions may be routinely available in future interventional suites with integrated multimodality CT or MR imaging capabilities. The purpose of this review is to discuss the outlook for intraoperative imaging and multimodality image fusion techniques and highlight their value during complex venous interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app