Add like
Add dislike
Add to saved papers

Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine.

Food Chemistry 2019 March 16
The ability of tannins to self-associate or form complexes with other macromolecules has important nutritional implications but can also result in defects in beverages. In addition, oxidation may be involved in the aggregation properties of tannins. In order to assess the impact of tannin oxidation on their self-association, oligomeric procyanidins were oxidized in a model solution and their aggregation kinetics were studied using light scattering. Under the conditions tested, only oxidized procyanidins were involved in haze formation. An increase in the level of oxidation and the degree of polymerization of procyanidins enhanced aggregation. Procyanidin oxidation products were depolymerized and the evolution of their markers was monitored throughout the aggregation process using liquid chromatography coupled with mass spectrometry. This revealed the involvement of intramolecular coupling in reversible haze formation. The haze formed in a model solution was partially reversible at high temperature. This property was similar in pommeau, an apple-based beverage. This work highlighted the involvement of oxidized tannins in reversible haze.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app