Add like
Add dislike
Add to saved papers

Kinetic analysis and degradation mechanism for natural attenuation of xylenes under simulated marine conditions.

Microcosm experiments were conducted to examine the attenuation of selected chemicals, i.e. m-xylene (MX), o-xylene (OX) and p-xylene (PX), under simulated marine conditions. Natural attenuation and the contribution of oxidation, photodegradation, biodegradation and volatilization to total attenuation were evaluated. The development of attenuation was in agreement with pseudo-first-order kinetics for all xylenes. The half-lives of MX, OX, and PX under optimal conditions were 0.76, 0.74 and 0.88 days, respectively. Attenuation kinetics were proposed to analyze the natural attenuation of xylenes. The leading attenuation type of MX, OX, and PX was volatilization, and the attenuation rate constants (KV ) were 0.5587, 0.6733, and 0.4821 d-1 , respectively. Biodegradation of OX (Kb : 0.0003 d-1 ) was extremely inhibited. The attenuation kinetics presented the attenuation of xylenes in microcosm. The reaction kinetics could be applied to analyze the natural attenuation of chemicals. MX and OX can be converted to one another under certain conditions. Toluene and ethylbenzene were detected for OX in the OP (oxidation and photodegradation) experiment under simulated marine conditions. 4-Methylbenzyl alcohol, p-methyl benzaldehyde and p-toluic acid, as the major intermediates, were identified during the natural attenuation of PX using GC/MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app