Journal Article
Review
Add like
Add dislike
Add to saved papers

Behavior of 36 Cl in agricultural soil-plant systems: A review of transfer processes and modelling approaches.

This article aims to review up-to-date knowledge and data acquired on 36 Cl transfers to terrestrial soil-plant systems, evaluate the existing modelling approaches and identify priorities for future model improvements. This update has revealed the existence of fairly recent studies, whose results could be used for improving the modelling approaches which have been developed over the last decade. The priority areas include the consideration of the dry deposition process and the transfer of both gaseous and aerosol 36 Cl to plants. The consideration of secondary processes such as the synthesis/mineralization of organochlorines and plant biomass litterfall is not recognized as a priority issue when assessing the impact of gaseous discharges. It was also identified that additional experimental studies had to be conducted to improve the understanding of the processes governing stable Cl and 36 Cl dynamics in other terrestrial ecosystems (field crops, vegetables, grass) than forest environments on which most of the reported knowledge and data are reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app