Add like
Add dislike
Add to saved papers

Concept of sample-specific correction of immunoassay results for precise and accurate IgG quantification in horse plasma.

The hyperimmune horse plasma (HHP), prepared through active immunisation of horses with an antigen of interest, is the most common starting material for antitoxin (animal antibody-based therapeutics) production. Precise IgG quantification in plasma is a prerequisite for accurate estimation of the purification process efficiency. Although immunoglobulins from HHP have been purified for over a century, there is still no in vitro method for precise and accurate determination of IgG content in HHP. For this reason, the purification process efficiency has been assessed by antibody activity measurements, mostly performed in vivo. Here we describe the development of a precise and accurate in vitro immunoassay for IgG quantification in HHP. We showed and highlighted that any difference in composition of IgG population between the standard and the sample, with respect to both IgG subclass distribution and antigen-specific IgG content, leads to inaccurate IgG quantification. We demonstrated that caprylic acid precipitation as the method for IgG isolation from horse plasma renders the composition of IgG population unchanged. This very efficient, fast, simple and inexpensive method was used to prepare internal, sample-specific reference IgG for each plasma sample, which was tested simultaneously to a respective plasma sample. Deviation of IgG quantity determined by ELISA for each sample-specific reference from its nominal value was used for correction of the results of respective plasma sample, which led to accurate and precise IgG quantification as shown by method validation. The here presented novel concept of sample-specific correction of immunoassay results could be widely applicable and easily introduced in different immunoassays for more accurate and precise plasma IgG quantification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app