Add like
Add dislike
Add to saved papers

Dopaminergic degeneration induces early posterior cortical thinning in Parkinson's disease.

Neurobiology of Disease 2018 November 7
BACKGROUND: Cognitive decline in Parkinson's disease (PD) is a highly prevalent condition with no effective treatment. Cortical atrophy is thought to promote its development but to design optimal therapeutic approaches in this clinical setting we need to understand the physiopathological mechanisms leading to this disorder.

OBJECTIVE: To characterize the impact of dopaminergic degeneration on cortical integrity in early PD.

METHODS: We studied 87 recently-diagnosed PD patients and 38 healthy controls from the Parkinson's Progression Marker Initiative who underwent I123-ioflupane SPECT (DATSCAN) and T1-MRI imaging. Using Freesurfer 6.0, we characterized baseline and longitudinal (one-year) correlations between striatal DAT uptake and cortical thickness. We also addressed the association between these imaging biomarkers and cognitive measures.

RESULTS: Reduced DAT uptake in PD patients was associated with cross-sectional and longitudinal cortical thinning in frontal and posterior-cortical brain regions. Imaging parameters correlated with cognitive indicators in multiple domains that extend beyond frontal-executive tasks. Dopaminergic medication attenuated the longitudinal loss of cortical integrity in frontal and a subset of parietal regions, but not in other key regions such as the precuneus.

DISCUSSION: To date, posterior cortical alterations in PD, known to play a major role in the development of PD-dementia, have mainly been attributed to a cholinergic degeneration occurring in later stages of the disease. Our results suggest that dopamine loss also promotes posterior-cortical atrophy from the very early stages of Parkinson's disease, which may have potential clinical and therapeutic implications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app