Add like
Add dislike
Add to saved papers

One 16 bp insertion/deletion (indel) within the KDM6A gene revealing strong associations with growth traits in goat.

Gene 2019 Februrary 21
Lysine demethylase 6A (KDM6A), as a candidate gene associated with skeletal dysplasia and the differentiation of osteogenesis, might affect the growth traits in animals. In the previous study (Cui et al., 2018), one 16 bp intronic insertion/deletion (NW_017189516.1: g.138, 431_138,446delAATGTATAGCTTAAAA) within the KDM6A gene significantly influenced KDM6A gene expression. The objective of this work was to investigate the association between this 16 bp indel and growth-related traits in Shaanbei White Cashmere goat (SWCG). Association analyses showed the 16 bp indel was related to growth traits strongly (body height, chest depth, height across the hip, body length and chest circumference) in SWCG population (n = 1953, P < 0.05). Insertion/insertion (II) genotype individuals (n = 1502) had the best growth traits, by comparison of those of insertion/deletion (ID) (n = 410) and the deletion/deletion (DD) genotypes (n = 41). Particularly, the body weight of II genotype individuals were significantly higher than ID and DD genotypes (P < 0.01). Besides, the remarkable influence of this indel on traits might cause by the change of MEF2 binding site. These findings hinted that the 16 bp deletion mutation in KDM6A gene, which was significantly associated with growth-related traits, could be assigned to an effective molecular marker for growth traits in goat breeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app